about summary refs log tree commit homepage
path: root/ext/tdb/lookup3.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/tdb/lookup3.c')
-rw-r--r--ext/tdb/lookup3.c429
1 files changed, 429 insertions, 0 deletions
diff --git a/ext/tdb/lookup3.c b/ext/tdb/lookup3.c
new file mode 100644
index 0000000..23a9088
--- /dev/null
+++ b/ext/tdb/lookup3.c
@@ -0,0 +1,429 @@
+#include "rbtdb.h"
+
+/*
+ * lookup3 implementation copied from tdb.git
+ * (commit 3258cf3f11bf7c68a2e69e1808c4551cc899725a),
+ * as that tdb distribution isn't commonly available yet (as of 2010.11.29)
+ */
+#ifndef HAVE_TDB_JENKINS_HASH
+
+#ifndef WORDS_BIGENDIAN
+# define HASH_LITTLE_ENDIAN 1
+# define HASH_BIG_ENDIAN 0
+#else
+# define HASH_LITTLE_ENDIAN 0
+# define HASH_BIG_ENDIAN 1
+#endif
+
+/*
+-------------------------------------------------------------------------------
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+
+These are functions for producing 32-bit hashes for hash table lookup.
+hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
+are externally useful functions.  Routines to test the hash are included
+if SELF_TEST is defined.  You can use this free for any purpose.  It's in
+the public domain.  It has no warranty.
+
+You probably want to use hashlittle().  hashlittle() and hashbig()
+hash byte arrays.  hashlittle() is is faster than hashbig() on
+little-endian machines.  Intel and AMD are little-endian machines.
+On second thought, you probably want hashlittle2(), which is identical to
+hashlittle() except it returns two 32-bit hashes for the price of one.
+You could implement hashbig2() if you wanted but I haven't bothered here.
+
+If you want to find a hash of, say, exactly 7 integers, do
+  a = i1;  b = i2;  c = i3;
+  mix(a,b,c);
+  a += i4; b += i5; c += i6;
+  mix(a,b,c);
+  a += i7;
+  final(a,b,c);
+then use c as the hash value.  If you have a variable length array of
+4-byte integers to hash, use hash_word().  If you have a byte array (like
+a character string), use hashlittle().  If you have several byte arrays, or
+a mix of things, see the comments above hashlittle().
+
+Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
+then mix those integers.  This is fast (you can do a lot more thorough
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
+*/
+
+#define hashsize(n) ((uint32_t)1<<(n))
+#define hashmask(n) (hashsize(n)-1)
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+/*
+-------------------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+
+This is reversible, so any information in (a,b,c) before mix() is
+still in (a,b,c) after mix().
+
+If four pairs of (a,b,c) inputs are run through mix(), or through
+mix() in reverse, there are at least 32 bits of the output that
+are sometimes the same for one pair and different for another pair.
+This was tested for:
+* pairs that differed by one bit, by two bits, in any combination
+  of top bits of (a,b,c), or in any combination of bottom bits of
+  (a,b,c).
+* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
+  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+  is commonly produced by subtraction) look like a single 1-bit
+  difference.
+* the base values were pseudorandom, all zero but one bit set, or
+  all zero plus a counter that starts at zero.
+
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+satisfy this are
+    4  6  8 16 19  4
+    9 15  3 18 27 15
+   14  9  3  7 17  3
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
+for "differ" defined as + with a one-bit base and a two-bit delta.  I
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
+the operations, constants, and arrangements of the variables.
+
+This does not achieve avalanche.  There are input bits of (a,b,c)
+that fail to affect some output bits of (a,b,c), especially of a.  The
+most thoroughly mixed value is c, but it doesn't really even achieve
+avalanche in c.
+
+This allows some parallelism.  Read-after-writes are good at doubling
+the number of bits affected, so the goal of mixing pulls in the opposite
+direction as the goal of parallelism.  I did what I could.  Rotates
+seem to cost as much as shifts on every machine I could lay my hands
+on, and rotates are much kinder to the top and bottom bits, so I used
+rotates.
+-------------------------------------------------------------------------------
+*/
+#define mix(a,b,c) \
+{ \
+  a -= c;  a ^= rot(c, 4);  c += b; \
+  b -= a;  b ^= rot(a, 6);  a += c; \
+  c -= b;  c ^= rot(b, 8);  b += a; \
+  a -= c;  a ^= rot(c,16);  c += b; \
+  b -= a;  b ^= rot(a,19);  a += c; \
+  c -= b;  c ^= rot(b, 4);  b += a; \
+}
+
+/*
+-------------------------------------------------------------------------------
+final -- final mixing of 3 32-bit values (a,b,c) into c
+
+Pairs of (a,b,c) values differing in only a few bits will usually
+produce values of c that look totally different.  This was tested for
+* pairs that differed by one bit, by two bits, in any combination
+  of top bits of (a,b,c), or in any combination of bottom bits of
+  (a,b,c).
+* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
+  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+  is commonly produced by subtraction) look like a single 1-bit
+  difference.
+* the base values were pseudorandom, all zero but one bit set, or
+  all zero plus a counter that starts at zero.
+
+These constants passed:
+ 14 11 25 16 4 14 24
+ 12 14 25 16 4 14 24
+and these came close:
+  4  8 15 26 3 22 24
+ 10  8 15 26 3 22 24
+ 11  8 15 26 3 22 24
+-------------------------------------------------------------------------------
+*/
+#define final(a,b,c) \
+{ \
+  c ^= b; c -= rot(b,14); \
+  a ^= c; a -= rot(c,11); \
+  b ^= a; b -= rot(a,25); \
+  c ^= b; c -= rot(b,16); \
+  a ^= c; a -= rot(c,4);  \
+  b ^= a; b -= rot(a,14); \
+  c ^= b; c -= rot(b,24); \
+}
+
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+  k       : the key (the unaligned variable-length array of bytes)
+  length  : the length of the key, counting by bytes
+  val2    : IN: can be any 4-byte value OUT: second 32 bit hash.
+Returns a 32-bit value.  Every bit of the key affects every bit of
+the return value.  Two keys differing by one or two bits will have
+totally different hash values.  Note that the return value is better
+mixed than val2, so use that first.
+
+The best hash table sizes are powers of 2.  There is no need to do
+mod a prime (mod is sooo slow!).  If you need less than 32 bits,
+use a bitmask.  For example, if you need only 10 bits, do
+  h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
+code any way you wish, private, educational, or commercial.  It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable.  Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+
+static uint32_t hashlittle(const void *key, size_t length)
+{
+        uint32_t a, b, c;        /* internal state */
+        union {
+                const void *ptr;
+                size_t i;
+        } u;                        /* needed for Mac Powerbook G4 */
+
+        /* Set up the internal state */
+        a = b = c = 0xdeadbeef + ((uint32_t) length);
+
+        u.ptr = key;
+        if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+                const uint32_t *k = (const uint32_t *)key;        /* read 32-bit chunks */
+#ifdef VALGRIND
+                const uint8_t *k8;
+#endif
+
+    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+                while (length > 12) {
+                        a += k[0];
+                        b += k[1];
+                        c += k[2];
+                        mix(a, b, c);
+                        length -= 12;
+                        k += 3;
+                }
+
+    /*----------------------------- handle the last (probably partial) block */
+                /*
+                 * "k[2]&0xffffff" actually reads beyond the end of the string, but
+                 * then masks off the part it's not allowed to read.  Because the
+                 * string is aligned, the masked-off tail is in the same word as the
+                 * rest of the string.  Every machine with memory protection I've seen
+                 * does it on word boundaries, so is OK with this.  But VALGRIND will
+                 * still catch it and complain.  The masking trick does make the hash
+                 * noticably faster for short strings (like English words).
+                 */
+#ifndef VALGRIND
+
+                switch (length) {
+                case 12:
+                        c += k[2];
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 11:
+                        c += k[2] & 0xffffff;
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 10:
+                        c += k[2] & 0xffff;
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 9:
+                        c += k[2] & 0xff;
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 8:
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 7:
+                        b += k[1] & 0xffffff;
+                        a += k[0];
+                        break;
+                case 6:
+                        b += k[1] & 0xffff;
+                        a += k[0];
+                        break;
+                case 5:
+                        b += k[1] & 0xff;
+                        a += k[0];
+                        break;
+                case 4:
+                        a += k[0];
+                        break;
+                case 3:
+                        a += k[0] & 0xffffff;
+                        break;
+                case 2:
+                        a += k[0] & 0xffff;
+                        break;
+                case 1:
+                        a += k[0] & 0xff;
+                        break;
+                case 0:
+                        return c;        /* zero length strings require no mixing */
+                }
+
+#else                                /* make valgrind happy */
+
+                k8 = (const uint8_t *)k;
+                switch (length) {
+                case 12:
+                        c += k[2];
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 11:
+                        c += ((uint32_t) k8[10]) << 16;        /* fall through */
+                case 10:
+                        c += ((uint32_t) k8[9]) << 8;        /* fall through */
+                case 9:
+                        c += k8[8];        /* fall through */
+                case 8:
+                        b += k[1];
+                        a += k[0];
+                        break;
+                case 7:
+                        b += ((uint32_t) k8[6]) << 16;        /* fall through */
+                case 6:
+                        b += ((uint32_t) k8[5]) << 8;        /* fall through */
+                case 5:
+                        b += k8[4];        /* fall through */
+                case 4:
+                        a += k[0];
+                        break;
+                case 3:
+                        a += ((uint32_t) k8[2]) << 16;        /* fall through */
+                case 2:
+                        a += ((uint32_t) k8[1]) << 8;        /* fall through */
+                case 1:
+                        a += k8[0];
+                        break;
+                case 0:
+                        return c;
+                }
+
+#endif                                /* !valgrind */
+
+        } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+                const uint16_t *k = (const uint16_t *)key;        /* read 16-bit chunks */
+                const uint8_t *k8;
+
+    /*--------------- all but last block: aligned reads and different mixing */
+                while (length > 12) {
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        b += k[2] + (((uint32_t) k[3]) << 16);
+                        c += k[4] + (((uint32_t) k[5]) << 16);
+                        mix(a, b, c);
+                        length -= 12;
+                        k += 6;
+                }
+
+    /*----------------------------- handle the last (probably partial) block */
+                k8 = (const uint8_t *)k;
+                switch (length) {
+                case 12:
+                        c += k[4] + (((uint32_t) k[5]) << 16);
+                        b += k[2] + (((uint32_t) k[3]) << 16);
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        break;
+                case 11:
+                        c += ((uint32_t) k8[10]) << 16;        /* fall through */
+                case 10:
+                        c += k[4];
+                        b += k[2] + (((uint32_t) k[3]) << 16);
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        break;
+                case 9:
+                        c += k8[8];        /* fall through */
+                case 8:
+                        b += k[2] + (((uint32_t) k[3]) << 16);
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        break;
+                case 7:
+                        b += ((uint32_t) k8[6]) << 16;        /* fall through */
+                case 6:
+                        b += k[2];
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        break;
+                case 5:
+                        b += k8[4];        /* fall through */
+                case 4:
+                        a += k[0] + (((uint32_t) k[1]) << 16);
+                        break;
+                case 3:
+                        a += ((uint32_t) k8[2]) << 16;        /* fall through */
+                case 2:
+                        a += k[0];
+                        break;
+                case 1:
+                        a += k8[0];
+                        break;
+                case 0:
+                        return c;        /* zero length requires no mixing */
+                }
+
+        } else {                /* need to read the key one byte at a time */
+                const uint8_t *k = (const uint8_t *)key;
+
+    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+                while (length > 12) {
+                        a += k[0];
+                        a += ((uint32_t) k[1]) << 8;
+                        a += ((uint32_t) k[2]) << 16;
+                        a += ((uint32_t) k[3]) << 24;
+                        b += k[4];
+                        b += ((uint32_t) k[5]) << 8;
+                        b += ((uint32_t) k[6]) << 16;
+                        b += ((uint32_t) k[7]) << 24;
+                        c += k[8];
+                        c += ((uint32_t) k[9]) << 8;
+                        c += ((uint32_t) k[10]) << 16;
+                        c += ((uint32_t) k[11]) << 24;
+                        mix(a, b, c);
+                        length -= 12;
+                        k += 12;
+                }
+
+    /*-------------------------------- last block: affect all 32 bits of (c) */
+                switch (length) {        /* all the case statements fall through */
+                case 12:
+                        c += ((uint32_t) k[11]) << 24;
+                case 11:
+                        c += ((uint32_t) k[10]) << 16;
+                case 10:
+                        c += ((uint32_t) k[9]) << 8;
+                case 9:
+                        c += k[8];
+                case 8:
+                        b += ((uint32_t) k[7]) << 24;
+                case 7:
+                        b += ((uint32_t) k[6]) << 16;
+                case 6:
+                        b += ((uint32_t) k[5]) << 8;
+                case 5:
+                        b += k[4];
+                case 4:
+                        a += ((uint32_t) k[3]) << 24;
+                case 3:
+                        a += ((uint32_t) k[2]) << 16;
+                case 2:
+                        a += ((uint32_t) k[1]) << 8;
+                case 1:
+                        a += k[0];
+                        break;
+                case 0:
+                        return c;
+                }
+        }
+
+        final(a, b, c);
+        return c;
+}
+
+unsigned int rbtdb_jenkins_lookup3(TDB_DATA * key)
+{
+        return hashlittle(key->dptr, key->dsize);
+}
+#endif /* !HAVE_TDB_JENKINS_HASH */